Ирина Григорян
Всеволод Макеев ::: Биография

БИОЧИПЫ КАК ПРИМЕР ИНДУСТРИАЛЬНОЙ БИОЛОГИИ

Живые организмы устроены крайне сложно и содержат большое количество взаимодействующих систем. Основную роль в управлении жизнедеятельностью играют гены - участки молекулы ДНК, в которых хранится информация об устройстве молекул, вовлеченных в различные процессы в живой клетке. Считается, что ген работает, когда с него считывается информация.
Биологам и медикам необходимо знать реакцию больших каскадов взаимозависимых и взаимообуславливающих генов на то или иное изменение внешних условий, например, в ответ на введенное лекарство.
Полное число генов измеряется величинами порядка 102 (6200 у дрожжей) - 104 (38 000 по последним данным у человека), при этом базовые жизненные процессы регулируются сотнями генов. До последнего времени в значительной степени отсутствовали возможности для получения, хранения и обработки столь значительных массивов данных. Благодаря прогрессу компьютерной индустрии были созданы как технологии для одновременного экспериментального получения информации о работе большого числа генов в клетке, так и методы обработки этой информации, позволяющие сделать на ее основе простые и однозначные выводы (например, поставить точный диагноз какого-либо заболевания).

Данная электронная версия книги "Биомедиале. Современное общество и геномная культура" не полна. Текст без пропусков может быть приобретен в печатной форме в виде антологии. Запрос направлять по адресу: 236000, Россия, г. Калининград, ул. К.Маркса, 18, по телефонам: Калининград (0112)216251, Санкт-Петербург (812)3885881, Москва (095)2867666. Электронный магазин: http://www.yantskaz.ru, Книга-почтой: тел.(0112)216251, все справки по электронному адресу: bulatov@ncca.koenig.ru. Полная ссылка на данную книгу: "Биомедиале. Современное общество и геномная культура". Составление и общая редакция Дмитрия Булатова. Калининград: КФ ГЦСИ, ФГУИПП «Янтарный сказ», 2004.

Таким образом оказалось, что прогресс биотехнологии нереален без разработки специализированных аппаратных, алгоритмических и программных средств, а соответствующая отрасль кибернетики вошла в состав биоинформатики.
Современная экспериментальная техника позволяет создать анализирующую матрицу (называемую также биочипом) размером несколько сантиметров, при помощи которой можно получить данные о состоянии всех генов организма. Для создания эффективной методики необходимы совместные усилия специалистов в области молекулярной биологии, физики, химии, микроэлектроники, программирования и математики.
История развития технологии биочипов относится к началу девяностых годов, при этом российская наука сыграла не последнюю роль. Здесь уместно пояснить, что биочипы по природе нанесенного на подложку материала делятся на "олигонуклеотидные", когда наносятся короткие фрагменты ДНК, обычно принадлежащие к одному и тому же гену, и биочипы на основе кДНК, когда робот наносит длинные фрагменты генов (длиной до 1000 нуклеотидов).
Наиболее популярны в настоящее время биочипы на основе кДНК, ставшие по-настоящему революционной технологией в биомедицине. Остановимся подробнее на их приготовлении, а также на получении и обработке данных с их помощью. Определяющей технологической идеей стало применение стеклянной подложки для нанесения генетического материала, что сделало возможным помещать на нее ничтожно малые его количества и очень точно определять местоположение конкретного вида тестируемой ДНК. Для приготовления биочипов стали использоваться роботы, применяемые прежде в микроэлектронике для создания микросхем (рис. 1). Молекулы ДНК каждого типа создаются в достаточном количестве копий с помощью процесса, называемого амплификацией; этот процесс также может быть автоматизирован, для чего используется специальный робот - умножитель. После этого полученный генетический материал наносится в заданную точку на стекле (на жаргоне такой процесс называется "печать") и химически пришивается к стеклу (иммобилизация). Для иммобилизации генетического материала необходима первичная обработка стекла, а также обработка напечатанного биочипа ультрафиолетом, стимулирующим образование химических связей между стеклом и молекулами ДНК (рис. 2).


Рис. 1. Для приготовления биочипов стали использоваться роботы, применяемые прежде в микроэлектронике для создания микросхем.



Рис. 2. После того как флуоресцирующие образцы прореагировали с биочипом, чип сканируют лазером, освещая поочередно точки нанесения ДНК каждого конкретного типа и следя за интенсивностью сигнала флуоресценции.

Грубо говоря, из клетки выделяется смесь продуктов работы генов, т. е. РНК различных типов, производимых в определенных условиях. Результатом эксперимента и является знание того, продукты каких именно генов появляются в клетке в условиях, интересующих исследователя. Молекулы каждого типа РНК связываются (в лучшем случае) с единственным типом молекул из иммобилизованных на биочипе. Те молекулы, которые не связались, можно смыть, а для определения того, к каким из иммобилизованных на чипе молекул нашлись "партнеры" в исследуемой клетке, экспериментальная и контрольная РНК метится флуоресцирующими красителями.


Рис. 3. Для иммобилизации генетического материала необходима первичная обработка стекла, а также обработка напечатанного биочипа ультрафиолетом, стимулирующим образование химических связей между стеклом и молекулами ДНК.

Таким образом, следующим этапом в получении результата на приготовленном биочипе является биохимическая реакция, в процессе которой один или несколько образцов ДНК или РНК, полученные из клеток, ткани или органа, метятся одним или несколькими флуоресцентными красителями и гибридизуются (связываются) с материалом, напечатанным на биочипе.

Данная электронная версия книги "Биомедиале. Современное общество и геномная культура" не полна. Текст без пропусков может быть приобретен в печатной форме в виде антологии. Запрос направлять по адресу: 236000, Россия, г. Калининград, ул. К.Маркса, 18, по телефонам: Калининград (0112)216251, Санкт-Петербург (812)3885881, Москва (095)2867666. Электронный магазин: http://www.yantskaz.ru, Книга-почтой: тел.(0112)216251, все справки по электронному адресу: bulatov@ncca.koenig.ru. Полная ссылка на данную книгу: "Биомедиале. Современное общество и геномная культура". Составление и общая редакция Дмитрия Булатова. Калининград: КФ ГЦСИ, ФГУИПП «Янтарный сказ», 2004.

Сигналы лазерного сканирования должны быть обработаны и проанализированы. Гены на стекле дают сигналы различной интенсивности, кроме того, всегда есть некоторое фоновое излучение от метки, не смывшейся со стекла, которое также неоднородно. Необходимо автоматически выделить из шума сигналы разной интенсивности, несущие различную информацию.


Рис. 4. Используя в качестве пробы РНК из клеток костного мозга, исследователям удалось выделить и подготовить к реальному использованию в качестве подчипа набор из 50 генов, сильное различие по экспресии которых позволяет однозначно определить тип опухоли.

На следующем этапе гены, которые дают в одинаковых условиях одинаковый сигнал, объединяются в группы. Это также делается автоматически с помощью алгоритмов кластерного анализа. Кластеры генов, ведущих себя схожим образом в разных условиях или в разные моменты времени, служат исходной точкой для заключений биологического характера.
В Советском Союзе была создана замечательная школа по разработке алгоритмов распознавания изображений, в первую очередь для анализа изображений, поступающих с искусственных спутников Земли. Наше математическое образование на протяжении многих десятилетий было одним из лучших в мире, поэтому наши прикладники, инженеры и алгоритмисты всегда легко разрабатывали оригинальные специализированные методы анализа данных. Неудивительно, что выходцы из нашего Отечества трудятся во многих фирмах, работающих на переднем крае возникающей на наших глазах индустрии, акции которых являются ценообразующими во всех биотехнологических биржевых индексах.
Однако создание биохимической технологии - в подавляющей степени заслуга американских фирм и научных центров. Mногие фирмы, такие как Affymetrix и Clontech, делают на заказ сами биочипы. Другие - например, Incyte - кроме изготовления биочипа на заказ и продажи генетического материала для печати на чип сами выполняют и гибридизацию, а заказчику предоставляет только готовые данные. Развитие индустрии зашло настолько далеко, что возник прибыльный рынок приготовления специально обработанных стекол для приготовления биочипов в условиях отдельной молекулярно-биологической лаборатории. К таким фирмам относится, например, Corning.




Рис. 5. Новизна биотехнологии состоит в том, что она основана на идее, что собственные биологические процессы тела могут быть перепроектированы на достижение нужных результатов.

Какие же задачи под силу подобной непростой технологии, имеющей дело с сотнями тысяч генов одновременно? Сразу хотелось бы сделать оговорку, что на сегодняшний момент имеется тенденция перехода от чипов с тысячами генов к чипам с сотнями генов, отобранных специально для решения конкретной задачи. Поясним на примере. Исследователями Массачусетского технологического института была сделана работа по использованию чипов для диагностики различных подклассов острого лейкоза человека. Точная диагностика двух подтипов острого лейкоза (острый миелоидный и острый лимфобластный) имеет определяющее значение при выборе курса терапии. Первоначально был использован олигонуклеотидный чип из 6000 генов. Используя в качестве пробы РНК из клеток костного мозга, исследователям удалось выделить и подготовить к реальному использованию в качестве подчипа набор из 50 генов, сильное различие по экспрессии которых позволяет однозначно определить тип опухоли (рис. 4).
Мы полагаем, что нет нужды доказывать необходимость диагностических чипов, поэтому, учитывая небольшое количество аналитических ячеек на чипе, а значит меньшую себестоимость, существует реальная возможность их разработки и производства у нас в стране.


Рис. 6. Прогресс биотехнологии нереален без разработки специализированных аппаратных, алгоритмических и программных средств.

Что же до классической науки, то тут возможности применения чипов безграничны. Группа исследователей из Иллинойского университета под руководством Андрея Гудкова, используя кДНК-чипы, нашла и сравнила спектры генов, отвечающих за реакцию клетки на радиационные воздействия различной природы. Под воздействием радиации, которое клетка воспринимает как стресс, активируются гены, известные как каскад зависимых от р53 генов (р53 - белок, одна из главных функций которого - защищать клетку от любых неблагоприятных воздействий). Многие из этих белков могут рассматриваться как кандидаты на использование в химиотерапии раковых опухолей и для защиты нормальных клеток организма от противоопухолевых агентов, таких как радиационное облучение и химиотерапевтические препараты.

Данная электронная версия книги "Биомедиале. Современное общество и геномная культура" не полна. Текст без пропусков может быть приобретен в печатной форме в виде антологии. Запрос направлять по адресу: 236000, Россия, г. Калининград, ул. К.Маркса, 18, по телефонам: Калининград (0112)216251, Санкт-Петербург (812)3885881, Москва (095)2867666. Электронный магазин: http://www.yantskaz.ru, Книга-почтой: тел.(0112)216251, все справки по электронному адресу: bulatov@ncca.koenig.ru. Полная ссылка на данную книгу: "Биомедиале. Современное общество и геномная культура". Составление и общая редакция Дмитрия Булатова. Калининград: КФ ГЦСИ, ФГУИПП «Янтарный сказ», 2004.

По-видимому, можно говорить (хотя и очень осторожно) о том, что получены прямые доказательства стрессогенного воздействия электромагнитного поля, а также данные о биохимических основах его биологического действия. Так что не исключено, что люди, меньше говорящие в течение дня по сотовому телефону или использующие специальные наушники, меньше устают в конце рабочего дня.
Судя по всему, мы присутствуем при возникновении нового метода получения и использования информации о живой природе. Данные будут собираться автоматически и на промышленной основе. Планирование и подготовка таких экспериментов, вероятно, со временем также будет осуществляться автоматически. В пользу этого свидетельствует опыт развития компьютерных технологий, где создание микропроцессора автоматизировано в значительной степени уже на ранних стадиях проектирования, все же дальнейшие стадии разработки и внедрения в производство во всё большей степени происходят практически без участия, да и без контроля человека. На "входе" будет ставиться задача крайне общего вида, например: найти три характерных гена, отвечающих за реакцию клетки на такие-то нестандартные внешние условия и не работающих ни в каких нормальных условиях. Автоматическая система будет сама осуществлять подбор биологического материала, подготовку, постановку и интерпретацию биологического эксперимента, а также формулировку наиболее вероятного решения поставленной задачи. На долю исследователя останется только тестирование полученных результатов и выработка инструкций для применения полученного нового знания в медицине или биотехнологии.
Более того, изменится, вероятно, сама идея биологического эксперимента. Поскольку заключение о работе той или иной живой системы будет выноситься с помощью компьютерного анализа данных, биологический эксперимент будет часто ставиться не с целью непосредственной проверки той или иной идеи, как сейчас, но с целью расшивки "узких мест" в работе автоматизированной системы хранения и обработки информации. Что-то подобное мы уже наблюдаем в физике высоких энергий, где эксперименты на ускорителях ставятся с учетом существующих приближенных методов вычислений в физических теориях с целью более точного определения оценочных параметров, в наибольшей степени влияющих на точность вычисляемых физических величин.
Хотелось бы надеяться, что в российских условиях можно будет включиться в серьезную работу по созданию программного обеспечения индустриальной биомедицины. Работа в этой области не требует больших затрат, характерных для биологических исследований (на оборудование, реактивы и т. д.) Дорогие суперкомпьютеры тоже в общем-то не необходимы - в большинстве научно-исследовательских центров в США используются кластеры ПК. Необходимы изобретательность, упорство и фантазия, а также хорошее владение современными математическими методами статистического анализа, что всегда составляло наши сильные стороны.
По-видимому, единственной организацией в России, серьезно занимающейся технологией биочипов, является Институт молекулярной биологии РАН им. В. А. Энгельгардта. В этом институте создаются также микрочипы с ячейками, содержащими различные зонды для проведения химических и ферментативных реакций с анализируемыми образцами.
Разработка технологии биологических микрочипов начата в ИМБ РАН в 1989 году и с тех пор продолжается усиленными темпами, в последние годы в сотрудничестве с США. ИМБ РАН принадлежит 15 международных и множество российских патентов. Более подробно с исследованиями, проводимыми в ИМБ РАН, можно ознакомиться на сайте: <http://www.biochip.ru/>




НА ГЛАВНУЮ    ENGLISH

Как заказать эту книгу

ВЫХОДНЫЕ ДАННЫЕ

СОДЕРЖАНИЕ:

I. МАСТЕРСКАЯ: наука и технологии

Светлана Боринская. Геномика и биотехнология: наука начала третьего тысячелетия.

Михаил Гельфанд. Вычислительная геномика: от пробирки к компьютеру и обратно.

Ирина Григорян, Всеволод Макеев. Биочипы как пример индустриальной биологии.

Валерий Шумаков, Александр Тоневицкий. Ксенотрансплантация: научные и этические проблемы.

Абрам Йойрыш. Правовые аспекты генной инженерии.

Павел Тищенко. Геномика: новый тип науки в новой культурной ситуации.
II. ФОРУМ: общество и геномная культура

Юджин Такер. Комната ожидания Дарвина.

Critical Art Ensemble. Биотехнология в общественном сознании: время обещаний.

SubRosa. Секс и гендер в век биотехнологий.

Рикардо Домингес. Неизбежность торжества нанотехнологий 3.0: фрагменты постбиотехнологической эры.

Биргит Рихард. Клоны и двойники. Тиражирование и воспроизведение "я" в кинообразах.

Свен Дрюль. Филогенез химер: от античности до наших дней.
III. ТОПОЛОГИЯ: от биополитики до биоэстетики

Борис Гройс. Искусство в эпоху биополитики.

Стивен Уилсон. Искусство и наука как культурные действия.

Мелентий Пандиловски. О феноменологии сознания, технологии и генетической культуре.

Рой Эскотт. Интерактивное искусство: на пороге постбиологической культуры.
IV. КОД ВЗАИМОДЕЙСТВИЯ: искусственная жизнь

Марк Бедо. Исследование гипертворчества человека с помощью технологии искусственной жизни.

Луи Бек. Искусственная жизнь под напряжением.

Алан Дорин. Виртуальные животные в виртуальных средах.

Криста Зоммерер, Лоран Миньоно. Использование принципов искусственной жизни в интерактивных компьютерных инсталляциях.
V. ТЕАТР НОВОГО ВРЕМЕНИ: ars genetica

Джордж Гессерт. История искусства с привлечением ДНК.

Кетлин Роджерс. Образ материи.

Брендон Балланже. Источники искусственного отбора.

Марта ди Минизиш. Лаборатория как мастерская художника.

Адам Заретски. Зоо-арт ломовой лошади и экзамен по биоэтике.
VI. ТЕХНОЛОГИЯ ОБРАЗА: ars chimaera

Джо Дэвис. Монстры, карты, сигналы и коды.

Дэвид Кремерс. Парадокс Дельбрюка. Версия 3.

Эдуардо Кац. Зеленый флуоресцирующий кролик.

Дмитрий Булатов. Искусство химер.

Валерий Подорога. Рене Декарт и Ars Chimaera.
VII. МЕТАБОЛА: искусство и культура ткани

Йонат Цурр. Усложненные понятия о жизни: "полуживые" существа.

Орон Каттс. Фрагменты конструирования жизни - влажная палитра тканевой инженерии.
VIII. P.S.

Дмитрий Пригов. Мы о том, чего сказать нельзя.

Галерея влажного искусства

Биографии

Библиография

Веблиография

Глоссарий


© кф гцси. евгений паламарчук | Jaybe.ru